Noch Fragen? 0800 / 33 82 637

A Multiscale Harmonic Spline Interpolation Method for the Inverse Spheroidal Gravimetric Problem

Produktform: Buch

In the following we give the outline of this PhD thesis. In Chapter 1, we present the basic mathematical notations and concepts which are necessary to understand the work presented in this thesis. Section 1.3 in this chapter discussing the Jacobi ellipsoidal coordinate system might be of great interest for the reader who is not familiar with the spheroidal geometry. Not only the definitions of the harmonic functions, harmonic basis system and separable harmonic functions are given but also a detailed discussion on the necessary and sufficient conditions for a harmonic function to be separable in Jacobi ellipsoidal coordinates is given. Some recurrence formulae for the associated Legendre functions of the first kind on [−1, 1] andon0≤ u ≤ b are also added in this chapter. Also, a formula for the series expansion of the associated Legendre functions of the first kind ˜ Pn,j where n ∈ N0, j∈{0, ..., n} is calculated. Numerically stable recursive relations for the associated Legendre functions of the second kind are also briefly discussed. In the last section of this chapter, very interesting results on a reproducing kernel of a Hilbert space are recapitulated.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-8322-8807-5 / 978-3832288075 / 9783832288075

Verlag: Shaker

Erscheinungsdatum: 16.02.2010

Seiten: 130

Auflage: 1

Autor(en): Nahid Akhtar

45,80 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück