Noch Fragen? 0800 / 33 82 637

Adversarial Machine Learning

Attack Taxonomies, Defence Mechanisms, and Learning Theories

Produktform: Buch / Einband - fest (Hardcover)

Existing adversarial learning algorithms differ in design assumptions regarding adversary’s knowledge, attack strategies, attack influence, and security violation. In this book provides insights on the relation between adversarial learning and cybersecurity. The authors survey and summarize non-stationary data representations learnt by deep learning networks in big data, evolutionary computing, fog computing, cyber-physical systems, transfer learning, sparse learning, robust learning, and reinforcement learning. The robustness of deep learning networks is examined to produce a taxonomy of adversarial examples and algorithms. The authors also survey the use of game theory, convex optimization and stochastic optimization in adversarial deep learning formulations. weiterlesen

Sprache(n): Englisch

ISBN: 978-3-030-99771-7 / 978-3030997717 / 9783030997717

Verlag: Springer International Publishing

Erscheinungsdatum: 07.03.2023

Seiten: 302

Auflage: 1

Autor(en): Wanlei Zhou, Bo Liu, Wei Liu, Aneesh Sreevallabh Chivukula, Xinghao Yang

181,89 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück