Noch Fragen? 0800 / 33 82 637

Algorithmic Methods in Non-Commutative Algebra

Applications to Quantum Groups

Produktform: Buch / Einband - fest (Hardcover)

The already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative coordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincaré-Birkhoff-Witt rings. We include algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, etc.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-1-4020-1402-4 / 978-1402014024 / 9781402014024

Verlag: Springer Netherland

Erscheinungsdatum: 31.07.2003

Seiten: 300

Auflage: 1

Zielgruppe: Research

Autor(en): J.L. Bueso, José Gómez-Torrecillas, A. Verschoren

53,49 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück