Noch Fragen? 0800 / 33 82 637

An Introduction to Duplicate Detection

Produktform: E-Buch Text Elektronisches Buch in proprietärem

With the ever increasing volume of data, data quality problems abound. Multiple, yet different representations of the same real-world objects in data, duplicates, are one of the most intriguing data quality problems. The effects of such duplicates are detrimental; for instance, bank customers can obtain duplicate identities, inventory levels are monitored incorrectly, catalogs are mailed multiple times to the same household, etc. Automatically detecting duplicates is difficult: First, duplicate representations are usually not identical but slightly differ in their values. Second, in principle all pairs of records should be compared, which is infeasible for large volumes of data. This lecture examines closely the two main components to overcome these difficulties: (i) Similarity measures are used to automatically identify duplicates when comparing two records. Well-chosen similarity measures improve the effectiveness of duplicate detection. (ii) Algorithms are developed to perform on very large volumes of data in search for duplicates. Well-designed algorithms improve the efficiency of duplicate detection. Finally, we discuss methods to evaluate the success of duplicate detection. Table of Contents: Data Cleansing: Introduction and Motivation / Problem Definition / Similarity Functions / Duplicate Detection Algorithms / Evaluating Detection Success / Conclusion and Outlook / Bibliographyweiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-3-031-01835-0 / 978-3031018350 / 9783031018350

Verlag: Springer International Publishing

Erscheinungsdatum: 01.06.2022

Seiten: 77

Autor(en): Melanie Herschel, Felix Nauman

26,74 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück