Noch Fragen? 0800 / 33 82 637

Analytic convexity and the principle of Phragmen-Lindeloff

Produktform: Buch / Einband - flex.(Paperback)

We consider in Rn a differential operator P(D), P a polynomial, with constant coefficients. Let U be an open set in Rn and A(U) be the space of real analytic functions on U. We consider the equation P(D)u=f, for f in A(U) and look for a solution in A(U). Hormander proved a necessary and sufficient condition for the solution to exist in the case U is convex. From this theorem one derives the fact that if a cone W admits a Phragmen-Lindeloff principle then at each of its non-zero real points the real part of W is pure dimensional of dimension n-1. The Phragmen-Lindeloff principle is reduced to the classical one in C. In this paper we consider a general Hilbert complex of differential operators with constant coefficients in Rn and we give, for U convex, the necessary and sufficient conditions for the vanishing of the H1 groups in terms of the generalization of Phragmen-Lindeloff principle.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-88-7642-243-0 / 978-8876422430 / 9788876422430

Verlag: Edizioni della Normale

Erscheinungsdatum: 01.10.1980

Seiten: 184

Auflage: 1

Zielgruppe: Research

Autor(en): Aldo Andreotti, Mauro Nacinovich

19,26 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück