Noch Fragen? 0800 / 33 82 637

Automated Development of Fundamental Mathematical Theories

Produktform: Buch / Einband - fest (Hardcover)

The author provides an introduction to automated reasoning, and in particular to resolution theorem proving using the prover OTTER. He presents a new clausal version of von Neumann-Bernays-Gödel set theory, and lists over 400 theorems proved semiautomatically in elementary set theory. He presents a semiautomated proof that the composition of homomorphisms is a homomorphism, thus solving a challenge problem. The author next develops Peano's arithmetic, and gives more than 1200 definitions and theorems in elementary number theory. He gives part of the proof of the fundamental theorem of arithmetic (unique factorization), and gives and OTTER-generated proof of Euler's generalization of Fermat's theorem. Next he develops Tarski's geometry within OTTER. He obtains proofs of most of the challenge problems appearing in the literature, and offers further challenges. He then formalizes the modal logic calculus K4, in order to obtain very high level automated proofs of Löb's theorem, and of Gödel's two incompleteness theorems. Finally he offers thirty-one unsolved problems in elementary number theory as challenge problems. weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-0-7923-2021-0 / 978-0792320210 / 9780792320210

Verlag: Springer Netherland

Erscheinungsdatum: 30.11.1992

Seiten: 273

Auflage: 1

Zielgruppe: Research

Autor(en): Art Quaife

213,99 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück