Noch Fragen? 0800 / 33 82 637

Bayesian Optimization with Application to Computer Experiments

Produktform: E-Buch Text Elektronisches Buch in proprietärem

Compact and accessible, the volume is broken down into four chapters. Chapter 1 introduces the reader to the topic of computer experiments; it includes a variety of examples across many industries. Chapter 2 focuses on the task of surrogate model building and contains a mix of several different surrogate models that are used in the computer modeling and machine learning communities. Chapter 3 introduces the core concepts of Bayesian optimization and discusses unconstrained optimization. Chapter 4 moves on to constrained optimization, and showcases some of the most novel methods found in the field. This will be a useful companion to researchers and practitioners working with computer experiments and computer modeling. Additionally, readers with a background in machine learning but minimal background in computer experiments will find this book an interesting case study of the applicability of Bayesian optimization outside the realm of machine learning.           weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-3-030-82458-7 / 978-3030824587 / 9783030824587

Verlag: Springer International Publishing

Erscheinungsdatum: 04.10.2021

Seiten: 104

Autor(en): Tony Pourmohamad, Herbert Lee, Herbert K. H. Lee

69,54 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück