Noch Fragen? 0800 / 33 82 637

Computational Texture and Patterns

From Textons to Deep Learning

Produktform: Buch / Einband - flex.(Paperback)

Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to learn about the physical world. Our ability to capture visual imagery with cameras and sensors has resulted in vast amounts of raw data, but using this information effectively in a task-specific manner requires sophisticated computational representations. We enumerate specific desirable traits for these representations: (1) intraclass invariance—to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction and synthesis to use the model to infer continuation of the pattern; (4) support for change detection to detect anomalies and perturbations; and (5) support for physics-based interpretation to infer system properties from appearance. In recent years, computer vision has undergone a metamorphosis with classic algorithms adapting to new trends in deep learning. This text provides a tour of algorithm evolution including pattern recognition, segmentation and synthesis. We consider the general relevance and prominence of visual pattern analysis and applications that rely on computational models.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-031-00695-1 / 978-3031006951 / 9783031006951

Verlag: Springer International Publishing

Erscheinungsdatum: 13.09.2018

Seiten: 99

Auflage: 1

Autor(en): Kristin J. Dana

58,84 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück