Noch Fragen? 0800 / 33 82 637

Conductive Homogeneity of Compact Metric Spaces and Construction of p-Energy

Produktform: Buch / Einband - flex.(Paperback)

In the ordinary theory of Sobolev spaces on domains of ℝ^n, the p-energy is defined as the integral of |∇f |p. In this paper, we try to construct a p-energy on compact metric spaces as a scaling limit of discrete p-energies on a series of graphs approximating the original space. In conclusion, we propose a notion called conductive homogeneity under which one can construct a reasonable p-energy if p is greater than the Ahlfors regular conformal dimension of the space. In particular, if p = 2, then we construct a local regular Dirichlet form and show that the heat kernel associated with the Dirichlet form satisfies upper and lower sub-Gaussian type heat kernel estimates. As examples of conductively homogeneous spaces, we present new classes of square-based self-similar sets and rationally ramified Sierpiński crosses, where no diffusions were constructed before.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-9854705-6-3 / 978-3985470563 / 9783985470563

Verlag: EMS Press

Erscheinungsdatum: 30.06.2023

Seiten: 130

Auflage: 1

Zielgruppe: Researchers interested in the study of self-similar sets, analysis on metric spaces, potential theory on fractals and metric spaces, and in the applications of quasiconformal mappings

Autor(en): Jun Kigami

69,00 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück