Noch Fragen? 0800 / 33 82 637

Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms

Produktform: E-Buch Text Elektronisches Buch in proprietärem

Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios. Part I: Introduction to optimization, benchmarking, and statistical analysis – Chapters 2-4.Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms – Chapters 5-7.Part III: Implementation and application of Deep Statistical Comparison – Chapter 8. weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-3-030-96917-2 / 978-3030969172 / 9783030969172

Verlag: Springer International Publishing

Erscheinungsdatum: 11.06.2022

Seiten: 133

Autor(en): Peter Korošec, Tome Eftimov

139,09 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück