Noch Fragen? 0800 / 33 82 637

Design of Experiments for Reinforcement Learning

Produktform: Buch / Einband - flex.(Paperback)

This thesis takes an empirical approach to understanding of the behavior and interactions between the two main components of reinforcement learning: the learning algorithm and the functional representation of learned knowledge. The author approaches these entities using design of experiments not commonly employed to study machine learning methods. The results outlined in this work provide insight as to what enables and what has an effect on successful reinforcement learning implementations so that this learning method can be applied to more challenging problems. weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-319-38551-8 / 978-3319385518 / 9783319385518

Verlag: Springer International Publishing

Erscheinungsdatum: 22.09.2016

Seiten: 191

Auflage: 1

Autor(en): Christopher Gatti

106,99 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück