Noch Fragen? 0800 / 33 82 637

Development and Analysis of non-standard Echo State Networks

Produktform: Buch / Einband - fest (Hardcover)

In an era of complex deep learning architectures like transformers, CNNs, and LSTM cells, the challenge persists: the hunger for labeled data and high energy. This dissertation explores Echo State Network (ESN), an RNN variant. ESN‘s efficiency in linear regression training and simplicity suggest pathways to resource-efficient, adaptable deep learning. Systematically deconstructing ESN architecture into flexible modules, it introduces basic ESN models with random weights and efficient deterministic ESN models as baselines. Diverse unsupervised pre-training methods for ESN components are evaluated against these baselines. Rigorous benchmarking across datasets — time-series classification, audio recognition — shows competitive performance of ESN models with state-of-the-art approaches. Identified nuanced use cases guiding model preferences and limitations in training methods highlight the importance of proposed ESN models in bridging reservoir computing and deep learning.weiterlesen

Sprache(n): Englisch

ISBN: 978-3-9590864-8-6 / 978-3959086486 / 9783959086486

Verlag: TUDpress

Erscheinungsdatum: 15.02.2024

Seiten: 219

Auflage: 1

Autor(en): Peter Steiner

39,80 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück