Noch Fragen? 0800 / 33 82 637

Diagnostic Methods in Time Series

Produktform: E-Buch Text Elektronisches Buch in proprietärem

This book contains new aspects of model diagnostics in time series analysis, including variable selection problems and higher-order asymptotics of tests. This is the first book to cover systematic approaches and widely applicable results for nonstandard models including infinite variance processes. The book begins by introducing a unified view of a portmanteau-type test based on a likelihood ratio test, useful to test general parametric hypotheses inherent in statistical models. The conditions for the limit distribution of portmanteau-type tests to be asymptotically pivotal are given under general settings, and very clear implications for the relationships between the parameter of interest and the nuisance parameter are elucidated in terms of Fisher-information matrices. A robust testing procedure against heavy-tailed time series models is also constructed in the context of variable selection problems. The setting is very reasonable in the context of financial data analysis and econometrics, and the result is applicable to causality tests of heavy-tailed time series models. In the last two sections, Bartlett-type adjustments for a class of test statistics are discussed when the parameter of interest is on the boundary of the parameter space. A nonlinear adjustment procedure is proposed for a broad range of test statistics including the likelihood ratio, Wald and score statistics.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-9811622649 / 978-9811622649 / 9789811622649

Verlag: Springer Singapore

Erscheinungsdatum: 08.06.2021

Seiten: 108

Autor(en): Masanobu Taniguchi, Fumiya Akashi, Tomoyuki Amano, Anna Clara Monti

69,54 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück