Noch Fragen? 0800 / 33 82 637

Differential Equation Based Framework for Deep Reinforcement Learning

Produktform: Buch / Einband - flex.(Paperback)

In this thesis, we contribute to new directions within Reinforcement Learning, which are important for many practical applications such as the control of biomechanical models. We deepen the mathematical foundations of Reinforcement Learning by deriving theoretical results inspired by classical optimal control theory. In our derivations, Deep Reinforcement Learning serves as our starting point. Based on its working principle, we derive a new type of Reinforcement Learning framework by replacing the neural network by a suitable ordinary differential equation. Coming up with profound mathematical results within this differential equation based framework turns out to be a challenging research task, which we address in this thesis. Especially the derivation of optimality conditions takes a central role in our investigation. We establish new optimality conditions tailored to our specific situation and analyze a resulting gradient based approach. Finally, we illustrate the power, working principle and versatility of this approach by performing control tasks in the context of a navigation in the two dimensional plane, robot motions, and actuations of a human arm model.weiterlesen

Sprache(n): Englisch

ISBN: 978-3-8396-1682-6 / 978-3839616826 / 9783839616826

Verlag: Fraunhofer Verlag

Erscheinungsdatum: 22.02.2021

Seiten: 132

Herausgegeben von Simon Gottschalk

65,00 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück