Direct Numerical Simulation of Very-Large-Scale Motions in Turbulent Pipe Flow
Produktform: Buch
Turbulent pipe flow is not only of importance to engineering applications but also of fundamental interest to the study of wall-bounded turbulence. In the present work, the interaction of the so-called very-large-scale motions (VLSMs) with the near-wall, small-scale turbulence is explored by means of direct numerical simulation for friction Reynolds numbers up to Reτ = 2880 and pipe lengths up to L = 42R. Besides, the convergence and the scaling of different order moments of the velocity distribution are studied and also discussed with regard to VLSMs. The subsequent analysis of the streamwise energy budget equation of the filtered velocity field reveals that VLSMs obtain their energy from the mean velocity field via a production mechanism similar to the one known from the near-wall cycle. Moreover, the different energy budget terms are investigated by means of statistical averages, instantaneous flow field visualisations, and three-dimensional correlations, wherein the backscattering phenomenon is also dealt with. In brief, the research sheds new light on our understanding of the interaction between VLSMs and the near-wall cycle and leads to a better grasp of turbulent pipe flow in general.weiterlesen