Noch Fragen? 0800 / 33 82 637

Dynamic Parameter Adaptation for Meta-Heuristic Optimization Algorithms Through Type-2 Fuzzy Logic

Produktform: E-Buch Text Elektronisches Buch in proprietärem

In this book, a methodology for parameter adaptation in meta-heuristic op-timization methods is proposed. This methodology is based on using met-rics about the population of the meta-heuristic methods, to decide through a fuzzy inference system the best parameter values that were carefully se-lected to be adjusted. With this modification of parameters we want to find a better model of the behavior of the optimization method, because with the modification of parameters, these will affect directly the way in which the global or local search are performed.Three different optimization methods were used to verify the improve-ment of the proposed methodology. In this case the optimization methods are: PSO (Particle Swarm Optimization), ACO (Ant Colony Optimization) and GSA (Gravitational Search Algorithm), where some parameters are se-lected to be dynamically adjusted, and these parameters have the most im-pact in the behavior of each optimization method.Simulation results show that the proposed methodology helps to each optimization method in obtaining better results than the results obtained by the original method without parameter adjustment.weiterlesen

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-3-319-70851-5 / 978-3319708515 / 9783319708515

Verlag: Springer International Publishing

Erscheinungsdatum: 14.03.2018

Seiten: 105

Autor(en): Oscar Castillo, Patricia Melin, Fevrier Valdez, Frumen Olivas

53,49 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück