Efficient reinforcement learning using Gaussian processes
Produktform: Buch / Einband - flex.(Paperback)
This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.
First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias.
Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems.weiterlesen
Dieser Artikel gehört zu den folgenden Serien
36,00 € inkl. MwSt.
kostenloser Versand
lieferbar - Lieferzeit 10-15 Werktage
zurück