Noch Fragen? 0800 / 33 82 637

Evolutionary Multi-Task Optimization

Foundations and Methodologies

Produktform: Buch / Einband - flex.(Paperback)

A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain’s ability to generalize in optimization – particularly in population-based evolutionary algorithms – have received little attention to date.   weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-9811956522 / 978-9811956522 / 9789811956522

Verlag: Springer Singapore

Erscheinungsdatum: 12.04.2024

Seiten: 219

Auflage: 1

Autor(en): Kay Chen Tan, Abhishek Gupta, Yew Soon Ong, Liang Feng

181,89 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück