Noch Fragen? 0800 / 33 82 637

Federated Learning

Fundamentals and Advances

Produktform: E-Buch Text Elektronisches Buch in proprietärem

The book starts with a self-contained introduction to artificial neural networks, deep learning models, supervised learning algorithms, evolutionary algorithms, and evolutionary learning. Concise information is then presented on multi-party secure computation, differential privacy, and homomorphic encryption, followed by a detailed description of federated learning. In turn, the book addresses the latest advances in federate learning research, especially from the perspectives of communication efficiency, evolutionary learning, and privacy preservation. The book is particularly well suited for graduate students, academic researchers, and industrial practitioners in the field of machine learning and artificial intelligence. It can also be used as a self-learning resource for readers with a science or engineering background, or as a reference text for graduate courses.        weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-9811970832 / 978-9811970832 / 9789811970832

Verlag: Springer Singapore

Erscheinungsdatum: 29.11.2022

Seiten: 218

Autor(en): Yaochu Jin, Yang Chen, Hangyu Zhu, Jinjin Xu

160,49 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück