Noch Fragen? 0800 / 33 82 637

From Global to Local Statistical Shape Priors

Novel Methods to Obtain Accurate Reconstruction Results with a Limited Amount of Training Shapes

Produktform: Buch / Einband - fest (Hardcover)

This book proposes a new approach to handle the problem of limited training data. Common approaches to cope with this problem are to model the shape variability independently across predefined segments or to allow artificial shape variations that cannot be explained through the training data, both of which have their drawbacks. The approach presented uses a local shape prior in each element of the underlying data domain and couples all local shape priors via smoothness constraints. The book provides a sound mathematical foundation in order to embed this new shape prior formulation into the well-known variational image segmentation framework. The new segmentation approach so obtained allows accurate reconstruction of even complex object classes with only a few training shapes at hand.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-319-53507-4 / 978-3319535074 / 9783319535074

Verlag: Springer International Publishing

Erscheinungsdatum: 21.03.2017

Seiten: 259

Auflage: 1

Autor(en): Carsten Last

106,99 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück