Genetic and Evolutionary Computation — GECCO 2004
Genetic and Evolutionary Computation Conference Seattle, WA, USA, June 26–30, 2004 Proceedings, Part I
Produktform: E-Buch Text Elektronisches Buch in proprietärem
MostMOEAsuseadistancemetricorothercrowdingmethodinobjectivespaceinorder to maintain diversity for the non-dominated solutions on the Pareto optimal front. By ensuring diversity among the non-dominated solutions, it is possible to choose from a variety of solutions when attempting to solve a speci?c problem at hand. Supposewehavetwoobjectivefunctionsf (x)andf (x).Inthiscasewecande?ne 1 2 thedistancemetricastheEuclideandistanceinobjectivespacebetweentwoneighboring individuals and we thus obtain a distance given by 2 2 2 d (x ,x )=[f (x )?f (x )] +[f (x )?f (x )] . (1) 1 2 1 1 1 2 2 1 2 2 f wherex andx are two distinct individuals that are neighboring in objective space. If 1 2 2 2 the functions are badly scaled, e.g.[?f (x)] [?f (x)] , the distance metric can be 1 2 approximated to 2 2 d (x ,x )? [f (x )?f (x )] . (2) 1 2 1 1 1 2 f Insomecasesthisapproximationwillresultinanacceptablespreadofsolutionsalong the Pareto front, especially for small gradual slope changes as shown in the illustrated example in Fig. 1. 1.0 0.8 0.6 0.4 0.2 0 0 20 40 60 80 100 f 1 Fig.1.Forfrontswithsmallgradualslopechangesanacceptabledistributioncanbeobtainedeven if one of the objectives (in this casef ) is neglected from the distance calculations. 2 As can be seen in the ?gure, the distances marked by the arrows are not equal, but the solutions can still be seen to cover the front relatively well.weiterlesen
Dieser Artikel gehört zu den folgenden Serien
53,49 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand
sofort lieferbar - Lieferzeit 1-3 Werktage
zurück