Noch Fragen? 0800 / 33 82 637

Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration

Produktform: E-Buch Text Elektronisches Buch in proprietärem

This book introduces key topics on Geometric Invariant Theory, a technique to obtaining quotients in algebraic geometry with a good set of properties, through various examples. It starts from the classical Hilbert classification of binary forms, advancing to the construction of the moduli space of semistable holomorphic vector bundles, and to Hitchin’s theory on Higgs bundles. The relationship between the notion of stability between algebraic, differential and symplectic geometry settings is also covered.Unstable objects in moduli problems -- a result of the construction of moduli spaces -- get specific attention in this work. The notion of the Harder-Narasimhan filtration as a tool to handle them, and its relationship with GIT quotients, provide instigating new calculations in several problems. Applications include a survey of research results on correspondences between Harder-Narasimhan filtrations with the GIT picture and stratifications of the moduli space of Higgs bundles.Graduate students and researchers who want to approach Geometric Invariant Theory in moduli constructions can greatly benefit from this reading,  whose key prerequisites are general courses on algebraic geometry and differential geometry. weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-3-030-67829-6 / 978-3030678296 / 9783030678296

Verlag: Springer International Publishing

Erscheinungsdatum: 24.03.2021

Seiten: 127

Autor(en): Alfonso Zamora Saiz, Ronald A. Zúñiga-Rojas

69,54 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück