Noch Fragen? 0800 / 33 82 637

Handbook of Trustworthy Federated Learning

Produktform: Buch / Einband - fest (Hardcover)

The resource is divided into four parts. Part 1 (Security and Privacy) explores the robust defense mechanisms against targeted attacks and addresses fairness concerns, providing a multifaceted foundation for securing Federated Learning systems against evolving threats. Part 2 (Bilevel Optimization) unravels the intricacies of optimizing performance in federated settings. Part 3 (Graph and Large Language Models) addresses the challenges in training Graph Neural Networks and ensuring privacy in Federated Learning of natural language models. Part 4 (Edge Intelligence and Applications) demonstrates how Federated Learning can empower mobile applications and preserve privacy with synthetic data. weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-031-58922-5 / 978-3031589225 / 9783031589225

Verlag: Springer International Publishing

Erscheinungsdatum: 04.09.2024

Seiten: 428

Auflage: 1

Herausgegeben von My T. Thai, Bhavani Thuraisingham, Hai N. Phan

235,39 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück