Noch Fragen? 0800 / 33 82 637

High-Dimensional Covariance Matrix Estimation

An Introduction to Random Matrix Theory

Produktform: Buch / Einband - flex.(Paperback)

This book presents covariance matrix estimation and related aspects of random matrix theory. It focuses on the sample covariance matrix estimator and provides a holistic description of its properties under two asymptotic regimes: the traditional one, and the high-dimensional regime that better fits the big data context. It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way. The aim of this book is to inspire applied statisticians, econometricians, and machine learning practitioners who analyze high-dimensional data to apply the recent developments in their work.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-030-80064-2 / 978-3030800642 / 9783030800642

Verlag: Springer International Publishing

Erscheinungsdatum: 30.10.2021

Seiten: 115

Auflage: 1

Autor(en): Aygul Zagidullina

69,54 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück