Noch Fragen? 0800 / 33 82 637

Incompleteness for Higher-Order Arithmetic

An example based on Harrington’s Principle

Produktform: E-Buch Text Elektronisches Buch in proprietärem

The book examines the following foundation question: are all theorems in classic mathematics which are expressible in second order arithmetic provable in second order arithmetic? In this book, the author gives a counterexample for this question and isolates this counterexample from Martin-Harrington theorem in set theory. It shows that the statement “Harrington’s principle implies zero sharp” is not provable in second order arithmetic. The book also examines what is the minimal system in higher order arithmetic to show that  Harrington’s principle implies zero sharp and the large cardinal strength of Harrington’s principle and its strengthening over second and third order arithmetic. weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-9811399497 / 978-9811399497 / 9789811399497

Verlag: Springer Singapore

Erscheinungsdatum: 30.08.2019

Seiten: 122

Autor(en): Yong Cheng

58,84 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück