Noch Fragen? 0800 / 33 82 637

Inequalities in Mechanics and Physics

Produktform: Buch / Einband - flex.(Paperback)

1. We begin by giving a simple example of a partial differential inequality that occurs in an elementary physics problem. We consider a fluid with pressure u(x, t) at the point x at the instant t that 3 occupies a region Q oflR bounded by a membrane r of negligible thickness that, however, is semi-permeable, i. e., a membrane that permits the fluid to enter Q freely but that prevents all outflow of fluid. One can prove then (cf. the details in Chapter 1, Section 2.2.1) that au (aZu azu aZu) (1) in Q, to, -a - du = g du = -a z + -a z + -a z t Xl X X3 z l g a given function, with boundary conditions in the form of inequalities u(X,t»o = au(x,t)/an=O, XEr, (2) u(x,t)=o = au(x,t)/an?:O, XEr, to which is added the initial condition (3) u(x,O)=uo(x). We note that conditions (2) are non linear; they imply that, at each fixed instant t, there exist on r two regions r~ and n where u(x, t) =0 and au (x, t)/an = 0, respectively. These regions are not prescribed; thus we deal with a "free boundary" problem.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-642-66167-9 / 978-3642661679 / 9783642661679

Verlag: Springer Berlin

Erscheinungsdatum: 15.11.2011

Seiten: 400

Auflage: 1

Autor(en): J. L. Lions, G. Duvant
Übersetzt von C. W. John

128,39 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück