Noch Fragen? 0800 / 33 82 637

Integrating the Wigner Distribution on Subsets of the Phase Space, a Survey

Produktform: Buch / Einband - flex.(Paperback)

We review several properties of integrals of the Wigner distribution on subsets of the phase space. Along our way, we provide a theoretical proof of the invalidity of Flandrin’s conjecture, a fact already proven via numerical arguments in our joint paper [J. Fourier Anal. Appl. 26 (2020), no. 1, article no. 6] with B. Delourme and T. Duyckaerts. We use also the J. G. Wood & A. J. Bracken paper [J. Math. Phys. 46 (2005), no. 4, article no. 042103], for which we offer a mathematical perspective. We review thoroughly the case of subsets of the plane whose boundary is a conic curve and show that Mehler’s formula can be helpful in the analysis of these cases, including for the higher dimensional case investigated in the paper [J. Math. Phys. 51 (2010), no. 10, article no. 102101] by E. Lieb and Y. Ostrover. Using the Feichtinger algebra, we show that, generically in the Baire sense, the Wigner distribution of a pulse in L^2(ℝ^n) does not belong to L^1(ℝ^2n), providing as a byproduct a large class of examples of subsets of the phase space ℝ^2n on which the integral of the Wigner distribution is infinite. We study as well the case of convex polygons of the plane, with a rather weak estimate depending on the number of vertices, but independent of the area of the polygon.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-9854707-1-6 / 978-3985470716 / 9783985470716

Verlag: EMS Press

Erscheinungsdatum: 31.03.2024

Seiten: 216

Auflage: 1

Autor(en): Nicolas Lerner

69,00 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück