L² Approaches in Several Complex Variables
Development of Oka–Cartan Theory by L² Estimates for the d-bar Operator
Produktform: E-Buch Text Elektronisches Buch in proprietärem
This monograph presents the current status of a rapidly developing part of several complex variables, motivated by the applicability of effective results to algebraic geometry and differential geometry. Special emphasis is put on the new precise results on the extension of holomorphic functions in the past 5 years.In Chapter 1, the classical questions of several complex variables motivating the development of this field are reviewed after necessary preparations from the basic notions of those variables and of complex manifolds such as holomorphic functions, pseudoconvexity, differential forms, and cohomology. In Chapter 2, the method of solving the d-bar equation is presented emphasizing its differential geometric aspect. In Chapter 3, a refinement of the Oka–Cartan theory is given by this method. The extension theorem with an optimal constant is included, obtained recently by Z. Błocki and separately by Q.-A. Guan and X.-Y. Zhou. In Chapter 4, various results on the Bergman kernel are presented, including recent works of Maitani–Yamaguchi, Berndtsson, Guan–Zhou, and Berndtsson–Lempert. Most of these results are obtained by the method. In the last chapter, rather specific results are discussed on the existence and classification of certain holomorphic foliations and Levi flat hypersurfaces as their stables sets. These are also applications of the method obtained during the past 15 years.weiterlesen
Dieser Artikel gehört zu den folgenden Serien
117,69 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand
lieferbar - Lieferzeit 10-15 Werktage
zurück