Noch Fragen? 0800 / 33 82 637

Latent Factor Analysis for High-dimensional and Sparse Matrices

A particle swarm optimization-based approach

Produktform: Buch / Einband - flex.(Paperback)

Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question. weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-9811967023 / 978-9811967023 / 9789811967023

Verlag: Springer Singapore

Erscheinungsdatum: 16.11.2022

Seiten: 92

Auflage: 1

Autor(en): Ye Yuan, Xin Luo

48,14 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück