Noch Fragen? 0800 / 33 82 637

Manifolds and Modular Forms

Produktform: Buch / Einband - flex.(Paperback)

During the winter term 1987/88 I gave a course at the University of Bonn under the title "Manifolds and Modular Forms". I wanted to develop the theory of "Elliptic Genera" and to learn it myself on this occasion. This theory due to Ochanine, Landweber, Stong and others was relatively new at the time. The word "genus" is meant in the sense of my book "Neue Topologische Methoden in der Algebraischen Geometrie" published in 1956: A genus is a homomorphism of the Thorn cobordism ring of oriented compact manifolds into the complex numbers. Fundamental examples are the signature and the A-genus. The A-genus equals the arithmetic genus of an algebraic manifold, provided the first Chern class of the manifold vanishes. According to Atiyah and Singer it is the index of the Dirac operator on a compact Riemannian manifold with spin structure. The elliptic genera depend on a parameter. For special values of the parameter one obtains the signature and the A-genus. Indeed, the universal elliptic genus can be regarded as a modular form with respect to the subgroup r (2) of the modular group; the two cusps 0 giving the signature and the A-genus. Witten and other physicists have given motivations for the elliptic genus by theoretical physics using the free loop space of a manifold.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-528-16414-0 / 978-3528164140 / 9783528164140

Verlag: Vieweg & Teubner

Erscheinungsdatum: 01.01.1994

Seiten: 212

Auflage: 2

Autor(en): Thomas Berger, Rainer Jung, Friedrich Hirzebruch
Übersetzt von Peter S. Translated by Landweber

53,49 € inkl. MwSt.
kostenloser Versand

sofort lieferbar - Lieferzeit 1-3 Werktage

zurück