Noch Fragen? 0800 / 33 82 637

Maximum Penalized Likelihood Estimation

Volume I: Density Estimation

Produktform: E-Buch Text Elektronisches Buch in proprietärem

This text deals with parametric and nonparametric density estimation from the maximum (penalized) likelihood point of view, including estimation under constraints such as unimodality and log-concavity. It is intended for graduate students in statistics, applied mathematics, and operations research, as well as for researchers and practitioners in the field. The focal points are existence and uniqueness of the estimators, almost sure convergence rates for the L1 error, and data-driven smoothing parameter selection methods, including their practical performance. The reader will gain insight into some of the generally applicable technical tools from probability theory (discrete parameter martingales) and applied mathematics (boundary, value problems and integration by parts tricks.) Convexity and convex optimization, as applied to maximum penalized likelihood estimation, receive special attention. The authors are with the Statistics Program of the Department of Food and Resource Economics in the College of Agriculture at the University of Delaware.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-1-07-161244-6 / 978-1071612446 / 9781071612446

Verlag: Springer US

Erscheinungsdatum: 15.12.2020

Seiten: 512

Autor(en): Vincent N. LaRiccia, P.P.B. Eggermont

96,29 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück