Noch Fragen? 0800 / 33 82 637

Methoden der Potentialtheorie für Elliptische Differentialgleichungen Beliebiger Ordnung

Produktform: E-Buch Text Elektronisches Buch in proprietärem

Die Theorie des NEWToNschen Potentials von Massenverteilungen im Raum ist eines der ältesten Beispiele einer Verbindung von physikalischer Anschauung und mathematischer Interpretation. Bedeutende Mathematiker vieler Generationen, wie C. F. GAUSS, H. POINCARE, D. lIILEERT, N. WIENER haben daran mitgearbeitet. Die Entwicklung der modernen Potentialtheorie ist auch wesentlich durch die Arbeiten von G. C. EVANS, M. RIEsz, O. FBOSTMAN, M. V. KELDYs, M. BRELoT, H. CARTAN, J. DENY, G. CHOQUET, J. L. DooE, H. BAUER, C. CONSTANTINESCU, V. G. MAz 'JA, B. FUGLEDE und anderen bestimmt worden. Historische Darstellungen wurden z. B. in [K6], [A30], [B40] gegeben. Obwohl einige Teile der Potentialtheorie heute als im wesentlichen abgeschlossen gelten, hat sich die Entwicklung in den letzten Jahren wieder erheblich verstärkt, seit sich viele ihrer leistungsfähigen Begriffe und Methoden durch den zunehmenden Einsatz funktionalanalytischer Methoden auf weite Klassen von Problemen aus der Theorie der partiellen Differentialgleichungen anwenden lassen. Daneben sind in der Analysis auch davon unabhängige Bestrebungen von potentialtheoretischem Charakter zu beobachten.weiterlesen

Elektronisches Format: PDF

Sprache(n): Deutsch

ISBN: 978-3-0348-5580-8 / 978-3034855808 / 9783034855808

Verlag: Springer Basel

Erscheinungsdatum: 03.09.2013

Seiten: 408

Autor(en): B.W. Schulze, Wildenhain

46,99 € inkl. MwSt.
Fixed Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück