Noch Fragen? 0800 / 33 82 637

Model-Based Recursive Partitioning with Adjustment for Measurement Error

Applied to the Cox’s Proportional Hazards and Weibull Model

Produktform: Buch / Einband - flex.(Paperback)

Model-based recursive partitioning (MOB) provides a powerful synthesis between machine-learning inspired recursive partitioning methods and regression models. Hanna Birke extends this approach by allowing in addition for measurement error in covariates, as frequently occurring in biometric (or econometric) studies, for instance, when measuring blood pressure or caloric intake per day. After an introduction into the background, the extended methodology is developed in detail for the Cox model and the Weibull model, carefully implemented in R, and investigated in a comprehensive simulation study.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-658-08504-9 / 978-3658085049 / 9783658085049

Verlag: Springer Fachmedien Wiesbaden GmbH

Erscheinungsdatum: 11.02.2015

Seiten: 240

Auflage: 1

Zielgruppe: Research

Autor(en): Hanna Birke

53,49 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück