Nonlinear state and parameter estimation of spatially distributed systems
Produktform: Buch / Einband - flex.(Paperback)
In this thesis two probabilistic model-based estimators are introduced that allow the reconstruction and identification of space-time continuous physical systems. The Sliced Gaussian Mixture Filter (SGMF) exploits linear substructures in mixed linear/nonlinear systems, and thus is well-suited for identifying various model parameters. The Covariance Bounds Filter (CBF) allows the efficient estimation of widely distributed systems in a decentralized fashion.weiterlesen
Dieser Artikel gehört zu den folgenden Serien
30,90 € inkl. MwSt.
kostenloser Versand
lieferbar - Lieferzeit 10-15 Werktage
zurück