Noch Fragen? 0800 / 33 82 637

Organic Computing

Doctoral Dissertation Colloquium 2022

Produktform: Buch / Einband - flex.(Paperback)

Electromobility plays an increasingly important role in the energy transition. Electric vehicle charging poses challenges to the electricity grid due to high peak demand situations. Therefore, it is crucial to leverage the vehicle’s flexibility when charging can be delayed. Conventional charging management systems cannot adapt to frequently changing conditions such as fluctuating renewable energy output, electricity prices and user behavior. In this article, we investigate the application of reinforcement learning approaches for self-adaptive charging management. In particular, we identify challenges regarding realistic environments and adaption to varying topologies and connections among charging stations.We describe related approaches and propose ideas and planned experiments to overcome these problems by utilizing generative models and graph neural networks.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-7376-1100-8 / 978-3737611008 / 9783737611008

Verlag: Kassel University Press

Erscheinungsdatum: 06.06.2023

Seiten: 198

Herausgegeben von Sven Tomforde, Christian Krupitzer

39,00 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück