Noch Fragen? 0800 / 33 82 637

Output Feedback Reinforcement Learning Control for Linear Systems

Produktform: E-Buch Text Elektronisches Buch in proprietärem

This monograph explores the analysis and design of model-free optimal control systems based on reinforcement learning (RL) theory, presenting new methods that overcome recent challenges faced by RL.  New developments in the design of sensor data efficient RL algorithms are demonstrated that not only reduce the requirement of sensors by means of output feedback, but also ensure optimality and stability guarantees.  A variety of practical challenges are considered, including disturbance rejection, control constraints, and communication delays.  Ideas from game theory are incorporated to solve output feedback disturbance rejection problems, and the concepts of low gain feedback control are employed to develop RL controllers that achieve global stability under control constraints. will be a valuable reference for graduate students, control theorists working on optimal control systems, engineers, and applied mathematicians.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-3-031-15858-2 / 978-3031158582 / 9783031158582

Verlag: Springer International Publishing

Erscheinungsdatum: 29.11.2022

Seiten: 294

Autor(en): Zongli Lin, Syed Ali Asad Rizvi

149,79 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück