Noch Fragen? 0800 / 33 82 637

Permutation Methods

A Distance Function Approach

Produktform: E-Buch Text Elektronisches Buch in proprietärem

The introduction of permutation tests by R. A. Fisher relaxed the paramet ric structure requirement of a test statistic. For example, the structure of the test statistic is no longer required if the assumption of normality is removed. The between-object distance function of classical test statis tics based on the assumption of normality is squared Euclidean distance. Because squared Euclidean distance is not a metric (i. e. , the triangle in equality is not satisfied), it is not at all surprising that classical tests are severely affected by an extreme measurement of a single object. A major purpose of this book is to take advantage of the relaxation of the struc ture of a statistic allowed by permutation tests. While a variety of distance functions are valid for permutation tests, a natural choice possessing many desirable properties is ordinary (i. e. , non-squared) Euclidean distance. Sim ulation studies show that permutation tests based on ordinary Euclidean distance are exceedingly robust in detecting location shifts of heavy-tailed distributions. These tests depend on a metric distance function and are reasonably powerful for a broad spectrum of univariate and multivariate distributions. Least sum of absolute deviations (LAD) regression linked with a per mutation test based on ordinary Euclidean distance yields a linear model analysis which controls for type I error.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-1-4757-3449-2 / 978-1475734492 / 9781475734492

Verlag: Springer US

Erscheinungsdatum: 29.06.2013

Seiten: 353

Autor(en): Kenneth J. Berry, Paul W. Jr. Mielke

85,59 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück