Noch Fragen? 0800 / 33 82 637

Recurrent Neural Networks for Short-Term Load Forecasting

An Overview and Comparative Analysis

Produktform: Buch / Einband - flex.(Paperback)

Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series. weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-319-70337-4 / 978-3319703374 / 9783319703374

Verlag: Springer International Publishing

Erscheinungsdatum: 17.11.2017

Seiten: 72

Auflage: 1

Autor(en): Robert Jenssen, Filippo Maria Bianchi, Enrico Maiorino, Michael C. Kampffmeyer, Antonello Rizzi

74,89 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück