Noch Fragen? 0800 / 33 82 637

Robustness Analysis of Deep Neural Networks in the Presence of Adversarial Perturbations and Noisy Labels

Produktform: Buch

In this thesis, we study the robustness and generalization properties of Deep Neural Networks (DNNs) under various noisy regimes, due to corrupted inputs or labels. Such corruptions can be either random or intentionally crafted to disturb the target DNN. Inputs corrupted by maliciously designed perturbations are known as adversarial examples and have been shown to severely degrade the performance of DNNs. However, due to the non-linearity of DNNs, crafting such perturbations is non-trivial. [...]weiterlesen

Sprache(n): Englisch

ISBN: 978-3-86359-802-0 / 978-3863598020 / 9783863598020

Verlag: Apprimus Verlag

Erscheinungsdatum: 14.01.2020

Seiten: 134

Auflage: 1

Autor(en): Emilio Balda

39,00 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück