Noch Fragen? 0800 / 33 82 637

Solution of Initial Value Problems in Classes of Generalized Analytic Functions

Produktform: E-Buch Text Elektronisches Buch in proprietärem

The purpose of the present book is to solve initial value problems in classes of generalized analytic functions as well as to explain the functional-analytic background material in detail. From the point of view of the theory of partial differential equations the book is intend ed to generalize the classicalCauchy-Kovalevskayatheorem, whereas the functional-analytic background connected with the method of successive approximations and the contraction-mapping principle leads to the con cept of so-called scales of Banach spaces: 1. The method of successive approximations allows to solve the initial value problem du CTf = f(t,u), (0. 1) u(O) = u , (0. 2) 0 where u = u(t) ist real o. r vector-valued. It is well-known that this method is also applicable if the function u belongs to a Banach space. A completely new situation arises if the right-hand side f(t,u) of the differential equation (0. 1) depends on a certain derivative Du of the sought function, i. e. , the differential equation (0,1) is replaced by the more general differential equation du dt = f(t,u,Du), (0. 3) There are diff. erential equations of type (0. 3) with smooth right-hand sides not possessing any solution to say nothing about the solvability of the initial value problem (0,3), (0,2), Assume, for instance, that the unknown function denoted by w is complex-valued and depends not only on the real variable t that can be interpreted as time but also on spacelike variables x and y, Then the differential equation (0.weiterlesen

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-3-662-09943-8 / 978-3662099438 / 9783662099438

Verlag: Springer Berlin

Erscheinungsdatum: 09.03.2013

Seiten: 188

Autor(en): Wolfgang Tutschke

53,49 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

sofort lieferbar - Lieferzeit 1-3 Werktage

zurück