Noch Fragen? 0800 / 33 82 637

Spatio-Temporal Data Analytics for Wind Energy Integration

Produktform: E-Buch Text Elektronisches Buch in proprietärem

This SpringerBrief presents spatio-temporal data analytics for wind energy integration using stochastic modeling and optimization methods. It explores techniques for efficiently integrating renewable energy generation into bulk power grids. The operational challenges of wind, and its variability are carefully examined. A spatio-temporal analysis approach enables the authors to develop Markov-chain-based short-term forecasts of wind farm power generation. To deal with the wind ramp dynamics, a support vector machine enhanced Markov model is introduced. The stochastic optimization of economic dispatch (ED) and interruptible load management are investigated as well. Spatio-Temporal Data Analytics for Wind Energy Integration is valuable for researchers and professionals working towards renewable energy integration. Advanced-level students studying electrical, computer and energy engineering should also find the content useful.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-3-319-12319-6 / 978-3319123196 / 9783319123196

Verlag: Springer International Publishing

Erscheinungsdatum: 14.11.2014

Seiten: 80

Autor(en): Lei Yang, Miao He, Junshan Zhang, Vijay Vittal

53,49 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück