Noch Fragen? 0800 / 33 82 637

Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations

Stochastic Manifolds for Nonlinear SPDEs II

Produktform: Buch / Einband - flex.(Paperback)

In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-319-12519-0 / 978-3319125190 / 9783319125190

Verlag: Springer International Publishing

Erscheinungsdatum: 14.01.2015

Seiten: 129

Auflage: 1

Zielgruppe: Research

Autor(en): Mickaël D. Chekroun, Honghu Liu, Shouhong Wang

Stichwörter: , , , , , ,

53,49 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück