Noch Fragen? 0800 / 33 82 637

Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations

Stochastic Manifolds for Nonlinear SPDEs II

Produktform: E-Buch Text Elektronisches Buch in proprietärem

In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-3-319-12520-6 / 978-3319125206 / 9783319125206

Verlag: Springer International Publishing

Erscheinungsdatum: 23.12.2014

Seiten: 129

Autor(en): Mickaël D. Chekroun, Honghu Liu, Shouhong Wang

Stichwörter: , , , , , ,

53,49 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück