Noch Fragen? 0800 / 33 82 637

The Homotopy Index and Partial Differential Equations

Produktform: Buch / Einband - flex.(Paperback)

The homotopy index theory was developed by Charles Conley for two sided flows on compact spaces. The homotopy or Conley index, which provides an algebraic-topologi cal measure of an isolated invariant set, is defined to be the ho motopy type of the quotient space N /N , where is a certain 1 2 1 2 compact pair, called an index pair. Roughly speaking, N1 isolates the invariant set and N2 is the "exit ramp" of N . 1 It is shown that the index is independent of the choice of the in dex pair and is invariant under homotopic perturbations of the flow. Moreover, the homotopy index generalizes the Morse index of a nQnde generate critical point p with respect to a gradient flow on a com pact manifold. In fact if the Morse index of p is k, then the homo topy index of the invariant set {p} is Ik - the homotopy type of the pointed k-dimensional unit sphere.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-540-18067-8 / 978-3540180678 / 9783540180678

Verlag: Springer Berlin

Erscheinungsdatum: 24.08.1987

Seiten: 208

Auflage: 1

Autor(en): Krzysztof Rybakowski, Krzysztof P. Rybakowski

53,49 € inkl. MwSt.
kostenloser Versand

sofort lieferbar - Lieferzeit 1-3 Werktage

zurück