Noch Fragen? 0800 / 33 82 637

The Maximum Consensus Problem

Recent Algorithmic Advances

Produktform: E-Buch Text Elektronisches Buch in proprietärem

Outlier-contaminated data is a fact of life in computer vision. For computer vision applications to perform reliably and accurately in practical settings, the processing of the input data must be conducted in a robust manner. In this context, the maximum consensus robust criterion plays a critical role by allowing the quantity of interest to be estimated from noisy and outlier-prone visual measurements. The refers to the problem of optimizing the quantity of interest according to the maximum consensus criterion. This book provides an overview of the algorithms for performing this optimization. The emphasis is on the basic operation or "inner workings" of the algorithms, and on their mathematical characteristics in terms of optimality and efficiency. The applicability of the techniques to common computer vision tasks is also highlighted. By collecting existing techniques in a single article, this book aims to trigger further developments in this theoretically interesting and practically important area.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-3-031-01818-3 / 978-3031018183 / 9783031018183

Verlag: Springer International Publishing

Erscheinungsdatum: 01.06.2022

Seiten: 178

Autor(en): David Suter, Tat-Jun Chin

53,49 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück