Noch Fragen? 0800 / 33 82 637

The Riemann-Hilbert Problem

A Publication from the Steklov Institute of Mathematics Adviser: Armen Sergeev

Produktform: E-Buch Text Elektronisches Buch in proprietärem

This book is devoted to Hilbert's 21st problem (the Riemann-Hilbert problem) which belongs to the theory of linear systems of ordinary differential equations in the complex domain. The problem concems the existence of a Fuchsian system with prescribed singularities and monodromy. Hilbert was convinced that such a system always exists. However, this tumed out to be a rare case of a wrong forecast made by hirn. In 1989 the second author (A.B.) discovered a counterexample, thus 1 obtaining a negative solution to Hilbert's 21st problem. After we recognized that some "data" (singularities and monodromy) can be obtai ned from a Fuchsian system and some others cannot, we are enforced to change our point of view. To make the terminology more precise, we shaII caII the foIIowing problem the Riemann-Hilbert problem for such and such data: does there exist a Fuchsian system having these singularities and monodromy? The contemporary version of the 21 st Hilbert problem is to find conditions implying a positive or negative solution to the Riemann-Hilbert problem.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-3-322-92909-9 / 978-3322929099 / 9783322929099

Verlag: Vieweg & Teubner

Erscheinungsdatum: 29.06.2013

Seiten: 193

Autor(en): D. V. Anosov, A. A. Bolibruch

90,94 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

sofort lieferbar - Lieferzeit 1-3 Werktage

zurück