Noch Fragen? 0800 / 33 82 637

Theoretical Foundations and Numerical Methods for Sparse Recovery

Produktform: Buch / Einband - fest (Hardcover)

The present collection is the very first contribution of this type in the field of sparse recovery. Compressed sensing is one of the important facets of the broader concept presented in the book, which by now has made connections with other branches such as mathematical imaging, inverse problems, numerical analysis and simulation. The book consists of four lecture notes of courses given at the Summer School on "Theoretical Foundations and Numerical Methods for Sparse Recovery" held at the Johann Radon Institute for Computational and Applied Mathematics in Linz, Austria, in September 2009. This unique collection will be of value for a broad community and may serve as a textbook for graduate courses. From the contents: "Compressive Sensing and Structured Random Matrices" by Holger Rauhut "Numerical Methods for Sparse Recovery" by Massimo Fornasier "Sparse Recovery in Inverse Problems" by Ronny Ramlau and Gerd Teschke "An Introduction to Total Variation for Image Analysis" by Antonin Chambolle, Vicent Caselles, Daniel Cremers, Matteo Novaga and Thomas Pockweiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-11-022614-0 / 978-3110226140 / 9783110226140

Verlag: De Gruyter

Erscheinungsdatum: 16.07.2010

Seiten: 350

Auflage: 1

Herausgegeben von Massimo Fornasier

189,95 € inkl. MwSt.
RRP
kostenloser Versand

sofort lieferbar - Lieferzeit 1-3 Werktage

zurück