Noch Fragen? 0800 / 33 82 637

Towards a Theory for Designing Machine Learning Systems for Complex Decision Making Problems

Produktform: E-Buch Text Elektronisches Buch in proprietärem

The ubiquitousness of data and the emergence of data-driven machine learning approaches provide new means of creating insights. However, coping with the great volume, velocity, and variety of data requires improved data analysis methods. This dissertation contributes a nascent design theory, named the Division-of-Labor framework, for developing complex machine learning systems that can not only address the challenges of big data but also leverage their characteristics to perform more sophisticated analyses. I evaluate the proposed design principles in three practical settings, in which I apply the principles to design machine learning systems that (i) support treatment decision making for cancer patients, (ii) provide consumers with recommendations on two-sided platforms, and (iii) address a trade-off between efficiency and comfort in the context of autonomous vehicles. The evaluations partially validate the proposed theory, but also show that some principles require further attention in order to be practicable. https://cuvillier.de/de/shop/publications/8223-towards-a-theory-for-designing-machine-learning-systems-for-complex-decision-making-problemsweiterlesen

Dieser Artikel gehört zu den folgenden Serien

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-3-7369-6200-2 / 978-3736962002 / 9783736962002

Verlag: Cuvillier Verlag

Erscheinungsdatum: 21.04.2020

Seiten: 202

Auflage: 1

Autor(en): Schahin Tofangchi

47,16 € inkl. MwSt.
kostenloser Versand

lieferbar - Lieferzeit 10-15 Werktage

zurück