Noch Fragen? 0800 / 33 82 637

Twistor Theory for Riemannian Symmetric Spaces

With Applications to Harmonic Maps of Riemann Surfaces

Produktform: Buch / Einband - flex.(Paperback)

In this monograph on twistor theory and its applications to harmonic map theory, a central theme is the interplay between the complex homogeneous geometry of flag manifolds and the real homogeneous geometry of symmetric spaces. In particular, flag manifolds are shown to arise as twistor spaces of Riemannian symmetric spaces. Applications of this theory include a complete classification of stable harmonic 2-spheres in Riemannian symmetric spaces and a Bäcklund transform for harmonic 2-spheres in Lie groups which, in many cases, provides a factorisation theorem for such spheres as well as gap phenomena. The main methods used are those of homogeneous geometry and Lie theory together with some algebraic geometry of Riemann surfaces. The work addresses differential geometers, especially those with interests in minimal surfaces and homogeneous manifolds.weiterlesen

Dieser Artikel gehört zu den folgenden Serien

Sprache(n): Englisch

ISBN: 978-3-540-52602-5 / 978-3540526025 / 9783540526025

Verlag: Springer Berlin

Erscheinungsdatum: 22.05.1990

Seiten: 110

Auflage: 1

Zielgruppe: Research

Autor(en): Francis E. Burstall, John H. Rawnsley

26,70 € inkl. MwSt.
kostenloser Versand

sofort lieferbar - Lieferzeit 1-3 Werktage

zurück