Noch Fragen? 0800 / 33 82 637

Unsupervised Classification

Similarity Measures, Classical and Metaheuristic Approaches, and Applications

Produktform: E-Buch Text Elektronisches Buch in proprietärem

Clustering is an important unsupervised classification technique where data points are grouped such that points that are similar in some sense belong to the same cluster. Cluster analysis is a complex problem as a variety of similarity and dissimilarity measures exist in the literature.This is the first book focused on clustering with a particular emphasis on symmetry-based measures of similarity and metaheuristic approaches. The aim is to find a suitable grouping of the input data set so that some criteria are optimized, and using this the authors frame the clustering problem as an optimization one where the objectives to be optimized may represent different characteristics such as compactness, symmetrical compactness, separation between clusters, or connectivity within a cluster. They explain the techniques in detail and outline many detailed applications in data mining, remote sensing and brain imaging, gene expression data analysis, and face detection.The book will be useful to graduate students and researchers in computer science, electrical engineering, system science, and information technology, both as a text and as a reference book. It will also be useful to researchers and practitioners in industry working on pattern recognition, data mining, soft computing, metaheuristics, bioinformatics, remote sensing, and brain imaging.weiterlesen

Elektronisches Format: PDF

Sprache(n): Englisch

ISBN: 978-3-642-32451-2 / 978-3642324512 / 9783642324512

Verlag: Springer Berlin

Erscheinungsdatum: 13.12.2012

Seiten: 262

Autor(en): Sanghamitra Bandyopadhyay, Sriparna Saha

50,28 € inkl. MwSt.
Recommended Retail Price
kostenloser Versand

sofort lieferbar - Lieferzeit 1-3 Werktage

zurück